With the expansion of neural networks, such as large language models, humanity is exponentially heading towards superintelligence. As various AI systems are increasingly integrated into the fabric of societies-through recommending values, devising creative solutions, and making decisions-it becomes critical to assess how these AI systems impact humans in the long run. This research aims to contribute towards establishing a benchmark for evaluating the sentiment of various Large Language Models in socially importan issues. The methodology adopted was a Likert scale survey. Seven LLMs, including GPT-4 and Bard, were analyzed and compared against sentiment data from three independent human sample populations. Temporal variations in sentiment were also evaluated over three consecutive days. The results highlighted a diversity in sentiment scores among LLMs, ranging from 3.32 to 4.12 out of 5. GPT-4 recorded the most positive sentiment score towards AGI, whereas Bard was leaning towards the neutral sentiment. The human samples, contrastingly, showed a lower average sentiment of 2.97. The temporal comparison revealed differences in sentiment evolution between LLMs in three days, ranging from 1.03% to 8.21%. The study's analysis outlines the prospect of potential conflicts of interest and bias possibilities in LLMs' sentiment formation. Results indicate that LLMs, akin to human cognitive processes, could potentially develop unique sentiments and subtly influence societies' perceptions towards various opinions formed within the LLMs.


翻译:暂无翻译

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
VIP会员
相关资讯
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员