This paper is concerned with the convergence of a series associated with a certain version of the convexification method. That version has been recently developed by the research group of the first author for solving coefficient inverse problems. The convexification method aims to construct a globally convex Tikhonov-like functional with a Carleman Weight Function in it. In the previous works the construction of the strictly convex weighted Tikhonov-like functional assumes a truncated Fourier series (i.e. a finite series instead of an infinite one) for a function generated by the total wave field. In this paper we prove a convergence property for this truncated Fourier series approximation. More precisely, we show that the residual of the approximate PDE obtained by using the truncated Fourier series tends to zero in $L^{2}$ as the truncation index in the truncated Fourier series tends to infinity. The proof relies on a convergence result in the $H^{1}$-norm for a sequence of $L^{2}$-orthogonal projections on finite-dimensional subspaces spanned by elements of a special Fourier basis. However, due to the ill-posed nature of coefficient inverse problems, we cannot prove that the solution of that approximate PDE, which results from the minimization of that Tikhonov-like functional, converges to the correct solution.


翻译:本文关注与某种版本的混凝法相关的一系列序列的趋同性。 该版本是第一位作者的研究组最近为解决反系数问题而开发的。 混凝土法旨在与其中的Carleman Weight 函数构建一个类似于 Tikhonov 的全球性 convex Tikhonov- 类似功能。 在先前的工程中, 完全civec加权的 Tikhoonov 类似功能的构建假设是一个短短的 Fourier 序列( 即一个有限序列, 而不是一个无限的系列), 用于由整个波字段生成的函数。 在本文中, 我们证明, 这个扭曲的 Fourier 序列的趋同性近似性。 更确切地说, 我们显示, 使用调的 Fourier 序列的近似 PDE 函数函数的剩余值为零 $L<unk> 2} 。 在短调的 Fourervier 序列中, 最小的调指数指数值指数值指数的构建为无限。 证据取决于 $H_1} NOthalnalnalnalalalalal resal rotispal resmission sal resmissue resmissueal romaismismismismismismismismismismismism 。 y prom</s>

0
下载
关闭预览

相关内容

专知会员服务
78+阅读 · 2021年3月16日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
18+阅读 · 2019年1月7日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Arxiv
0+阅读 · 2023年4月28日
VIP会员
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
18+阅读 · 2019年1月7日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Top
微信扫码咨询专知VIP会员