Malware detectors based on machine learning (ML) have been shown to be susceptible to adversarial malware examples. However, current methods to generate adversarial malware examples still have their limits. They either rely on detailed model information (gradient-based attacks), or on detailed outputs of the model - such as class probabilities (score-based attacks), neither of which are available in real-world scenarios. Alternatively, adversarial examples might be crafted using only the label assigned by the detector (label-based attack) to train a substitute network or an agent using reinforcement learning. Nonetheless, label-based attacks might require querying a black-box system from a small number to thousands of times, depending on the approach, which might not be feasible against malware detectors. This work presents a novel query-free approach to craft adversarial malware examples to evade ML-based malware detectors. To this end, we have devised a GAN-based framework to generate adversarial malware examples that look similar to benign executables in the feature space. To demonstrate the suitability of our approach we have applied the GAN-based attack to three common types of features usually employed by static ML-based malware detectors: (1) Byte histogram features, (2) API-based features, and (3) String-based features. Results show that our model-agnostic approach performs on par with MalGAN, while generating more realistic adversarial malware examples without requiring any query to the malware detectors. Furthermore, we have tested the generated adversarial examples against state-of-the-art multimodal and deep learning malware detectors, showing a decrease in detection performance, as well as a decrease in the average number of detections by the anti-malware engines in VirusTotal.


翻译:暂无翻译

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Arxiv
10+阅读 · 2021年2月26日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员