In this letter, we increase adaptivity of an existing robust estimation algorithm by learning two parameters instead of one to better fit the residual distribution. Our method uses these two parameters to calculate weights for Iterative Re-weighted Least Squares (IRLS). This adaptive nature of the weights is shown to be helpful in situations where the noise level varies in the measurements, and is shown to increase robustness to outliers. We test our algorithm first on the point cloud registration problem with synthetic data sets, where the truth transformation is known. Next, we also evaluate the approach with an open-source LiDAR-inertial SLAM package to demonstrate that the proposed approach is more effective than existing versions of the algorithm for the application of incremental LiDAR-inertial odometry. We also analyze the joint variability of the two parameters learned from the data sets.


翻译:在这封信中,我们通过学习两个参数而不是一个来更好地适应剩余分布,提高了现有稳健估算算法的适应性。我们的方法使用这两个参数来计算循环再加权最低平方(IRLS)的权重。在噪音水平在测量中各不相同的情况下,加权的这种适应性被证明是有益的,并显示能提高外部线的稳健性。我们首先用已知真相变异的合成数据集来测试点云登记问题。接下来,我们还用一个开放源的LiDAR- nearrtial SLM 软件包来评估这一方法,以证明拟议方法比现有应用递增LIDAR-肾脏测量法的算法版本更有效。我们还分析了从数据集中得出的两个参数的共同变异性。

0
下载
关闭预览

相关内容

不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
76+阅读 · 2022年6月28日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
VIP会员
相关资讯
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
相关基金
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员