Proofs in proof assistants like Coq can be brittle, breaking easily in response to changes in the terms and types those proofs depend on. To address this, recent work introduced an algorithm and tool in Coq to automatically repair broken proofs in response to changes that correspond to type equivalences. However, many changes remained out of the scope of this algorithm and tool -- especially changes in underlying behavior. We extend this proof repair algorithm so that it can express certain changes in behavior that were previously out of scope. We focus in particular on equivalences between quotient types -- types equipped with a relation that describes what it means for any two elements of that type to be equal. Quotient type equivalences can be used to express interesting changes in representations of mathematical structures, as well as changes in the underlying implementations of data structures -- two use cases highlighted by our case studies. We extend this algorithm to support quotient type equivalences in two different ways: (1) internally to cubical type theory (applied to Cubical Agda), and (2) externally to CIC$_{\omega}$ (applied to Coq). While our approach in Coq comes equipped with prototype automation, it suffers notably from Coq's lack of quotient types -- something we circumvent using Coq's setoid machinery and an extension to the proof repair algorithm to support the corresponding new proof obligations. In contrast, while our approach in Cubical Agda is completely manual, it takes advantage of cubical type theory's internal quotient types, which makes the algorithm straightforward. Furthermore, it includes the first internal proofs of correctness of repaired proofs, something not possible in general in Coq. We report on the tradeoffs between these two approaches, and demonstrate these tradeoffs on proof repair case studies for previously unsupported changes.


翻译:暂无翻译

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
3+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
Arxiv
0+阅读 · 2024年4月26日
Arxiv
0+阅读 · 2024年4月24日
Arxiv
29+阅读 · 2020年3月16日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关论文
Arxiv
0+阅读 · 2024年4月26日
Arxiv
0+阅读 · 2024年4月24日
Arxiv
29+阅读 · 2020年3月16日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
3+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员