The game of i-Mark is an impartial combinatorial game introduced by Sopena (2016). The game is parametrized by two sets of positive integers $S$, $D$, where $\min D\ge 2$. From position $n\ge 0$ one can move to any position $n-s$, $s\in S$, as long as $n-s\ge 0$, as well as to any position $n/d$, $d\in D$, as long as $n>0$ and $d$ divides $n$. The game ends when no more moves are possible, and the last player to move is the winner. Sopena, and subsequently Friman and Nivasch (2021), characterized the Sprague-Grundy sequences of many cases of i-Mark$(S,D)$ with $|D|=1$. Friman and Nivasch also obtained some partial results for the case i-Mark$(\{1\},\{2,3\})$. In this paper we present a convergence technique that gives polynomial-time algorithms for the Sprague-Grundy sequence of many instances of i-Mark with $|D|>1$. In particular, we prove our technique works for all games i-Mark$(\{1\},\{d_1,d_2\})$. Keywords: Combinatorial game, impartial game, Sprague-Grundy function, convergence, dynamic programming.
翻译:i-Mark游戏是由Sopena(2016年)引入的一种无偏组合博弈。该博弈由两个正整数集合$S$和$D$参数化,其中$\min D\ge 2$。从位置$n\ge 0$出发,玩家可以移动到任意满足$n-s\ge 0$的位置$n-s$(其中$s\in S$),也可以移动到任意满足$n>0$且$d$整除$n$的位置$n/d$(其中$d\in D$)。当无法再进行移动时游戏结束,最后移动的玩家获胜。Sopena以及随后的Friman与Nivasch(2021年)刻画了$|D|=1$时多种i-Mark$(S,D)$实例的Sprague-Grundy序列。Friman与Nivasch还对i-Mark$(\{1\},\{2,3\})$情形获得了部分结果。本文提出一种收敛技术,可为$|D|>1$的多种i-Mark实例的Sprague-Grundy序列提供多项式时间算法。特别地,我们证明该技术适用于所有i-Mark$(\{1\},\{d_1,d_2\})$博弈。关键词:组合博弈,无偏博弈,Sprague-Grundy函数,收敛,动态规划。