Many real-world problems require one to estimate parameters of interest, in a Bayesian framework, from data that are collected sequentially in time. Conventional methods for sampling from posterior distributions, such as {Markov Chain Monte Carlo} can not efficiently address such problems as they do not take advantage of the data's sequential structure. To this end, sequential methods which seek to update the posterior distribution whenever a new collection of data become available are often used to solve these types of problems. Two popular choices of sequential method are the Ensemble Kalman filter (EnKF) and the sequential Monte Carlo sampler (SMCS). While EnKF only computes a Gaussian approximation of the posterior distribution, SMCS can draw samples directly from the posterior. Its performance, however, depends critically upon the kernels that are used. In this work, we present a method that constructs the kernels of SMCS using an EnKF formulation, and we demonstrate the performance of the method with numerical examples.


翻译:许多现实世界问题要求人们从巴耶斯框架、从时间顺序收集的数据中估算出感兴趣的参数。从后面分布的常规采样方法,例如{马科夫链-蒙特卡洛},无法有效地解决没有利用数据顺序结构的问题。为此,经常使用连续方法解决这类类型的问题。两种流行的顺序方法是Ensemble Kalman过滤器(EnKF)和随后的Monte Carlo采样器(SMCS)。虽然EnKF只计算远地点分布的高山近似值,但SMCS只能直接从后面的分布中提取样品。然而,其性能主要取决于使用的内核。在这项工作中,我们提出了一个方法,用EnKF的配方构建SMCS的内核,我们用数字实例来展示该方法的性能。

0
下载
关闭预览

相关内容

强化学习最新教程,17页pdf
专知会员服务
182+阅读 · 2019年10月11日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
105+阅读 · 2019年10月9日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
VIP会员
相关资讯
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
相关基金
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员