Sleep stages play an important role in identifying sleep patterns and diagnosing sleep disorders. In this study, we present an automated sleep stage classifier called the Attentive Dilated Convolutional Neural Network (AttDiCNN), which uses deep learning methodologies to address challenges related to data heterogeneity, computational complexity, and reliable and automatic sleep staging. We employed a force-directed layout based on the visibility graph to capture the most significant information from the EEG signals, thereby representing the spatial-temporal features. The proposed network consists of three modules: the Localized Spatial Feature Extraction Network (LSFE), Spatio-Temporal-Temporal Long Retention Network (S2TLR), and Global Averaging Attention Network (G2A). The LSFE captures spatial information from sleep data, the S2TLR is designed to extract the most pertinent information in long-term contexts, and the G2A reduces computational overhead by aggregating information from the LSFE and S2TLR. We evaluated the performance of our model on three comprehensive and publicly accessible datasets, achieving state-of-the-art accuracies of 98.56%, 99.66%, and 99.08% for the EDFX, HMC, and NCH datasets, respectively, while maintaining a low computational complexity with 1.4 M parameters. Our proposed architecture surpasses existing methodologies in several performance metrics, thereby proving its potential as an automated tool for clinical settings.


翻译:睡眠分期在识别睡眠模式和诊断睡眠障碍中具有重要作用。本研究提出了一种名为注意力扩张卷积神经网络(AttDiCNN)的自动睡眠分期分类器,该模型采用深度学习方法以应对数据异质性、计算复杂性以及可靠自动睡眠分期相关的挑战。我们采用基于可见性图的力导向布局来捕获脑电信号中最显著的信息,从而表征时空特征。所提出的网络包含三个模块:局部空间特征提取网络(LSFE)、时空长时保留网络(S2TLR)以及全局平均注意力网络(G2A)。LSFE从睡眠数据中捕获空间信息,S2TLR旨在提取长期上下文中最相关的信息,G2A则通过聚合LSFE和S2TLR的信息来降低计算开销。我们在三个公开的综合数据集上评估了模型性能,在EDFX、HMC和NCH数据集上分别达到了98.56%、99.66%和99.08%的最先进准确率,同时仅以140万参数保持了较低的计算复杂度。我们提出的架构在多项性能指标上超越了现有方法,证明了其作为临床自动化工具的潜力。

0
下载
关闭预览

相关内容

Networking:IFIP International Conferences on Networking。 Explanation:国际网络会议。 Publisher:IFIP。 SIT: http://dblp.uni-trier.de/db/conf/networking/index.html
FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
46+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
Arxiv
21+阅读 · 2019年3月25日
VIP会员
相关资讯
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
46+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员