We present proof labeling schemes for graphs with bounded pathwidth that can decide any graph property expressible in monadic second-order (MSO) logic using $O(\log n)$-bit vertex labels. Examples of such properties include planarity, Hamiltonicity, $k$-colorability, $H$-minor-freeness, admitting a perfect matching, and having a vertex cover of a given size. Our proof labeling schemes improve upon a recent result by Fraigniaud, Montealegre, Rapaport, and Todinca (Algorithmica 2024), which achieved the same result for graphs of bounded treewidth but required $O(\log^2 n)$-bit labels. Our improved label size $O(\log n)$ is optimal, as it is well-known that any proof labeling scheme that accepts paths and rejects cycles requires labels of size $\Omega(\log n)$. Our result implies that graphs with pathwidth at most $k$ can be certified using $O(\log n)$-bit labels for any fixed constant $k$. Applying the Excluding Forest Theorem of Robertson and Seymour, we deduce that the class of $F$-minor-free graphs can be certified with $O(\log n)$-bit labels for any fixed forest $F$, thereby providing an affirmative answer to an open question posed by Bousquet, Feuilloley, and Pierron (Journal of Parallel and Distributed Computing 2024).


翻译:暂无翻译

0
下载
关闭预览

相关内容

【ACL2020】多模态信息抽取,365页ppt
专知会员服务
151+阅读 · 2020年7月6日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
5+阅读 · 2014年12月31日
国家自然科学基金
6+阅读 · 2014年12月31日
Arxiv
69+阅读 · 2022年9月7日
A survey on deep hashing for image retrieval
Arxiv
15+阅读 · 2020年6月10日
VIP会员
相关资讯
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
相关基金
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
5+阅读 · 2014年12月31日
国家自然科学基金
6+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员