We introduce and develop propositional continuous intuitionistic logic and propositional continuous affine logic via complete algebraic semantics. Our approach centres on AC-algebras, which are algebras $USC(\mathcal{L})$ of sup-preserving functions from $[0,1]$ to an integral commutative residuated complete lattice $\mathcal{L}$ (in the intuitionistic case, $\mathcal{L}$ is a locale). We give an algebraic axiomatisation of AC-algebras in the language of continuous logic and prove, using the Macneille completion, that every Archimedean model embeds into some AC-algebra. We also show that (i) $USC(\mathcal{L})$ satisfies $v \dot + v = 2v$ exactly when $\mathcal{L}$ is a locale, (ii) involutiveness of negation in $USC(\mathcal{L})$ corresponds to that in $\mathcal{L} $, and that (iii) adding those conditions recovers classical continuous logic. For each variant -affine, intuitionistic, involutive, classical -we provide a sequent style deductive system and prove completeness and cut admissibility. This yields the first sequent style formulation of classical continuous logic enjoying cut admissibility.


翻译:我们通过完备代数语义引入并发展了命题连续直觉主义逻辑与命题连续仿射逻辑。我们的方法以AC-代数为核心,即从$[0,1]$到整可换剩余完备格$\mathcal{L}$(直觉主义情形下$\mathcal{L}$为locale)的保上确界函数代数$USC(\mathcal{L})$。我们在连续逻辑语言中给出AC-代数的代数公理化,并利用Macneille完备化证明每个Archimedean模型均可嵌入某个AC-代数。我们还证明:(i) $USC(\mathcal{L})$满足$v \dot + v = 2v$当且仅当$\mathcal{L}$是locale;(ii) $USC(\mathcal{L})$中否定的对合性对应于$\mathcal{L}$中的对合性;(iii) 添加这些条件可恢复经典连续逻辑。针对每种变体——仿射、直觉主义、对合、经典——我们提供矢列式演绎系统,并证明完备性与割消可容许性。这首次得到了具有割消可容许性的经典连续逻辑矢列式系统。

0
下载
关闭预览

相关内容

UnHiPPO:面向不确定性的状态空间模型初始化方法
专知会员服务
11+阅读 · 2025年6月6日
【NeurIPS2022】黎曼扩散模型
专知会员服务
43+阅读 · 2022年9月15日
【ICLR2022】GNN-LM基于全局信息的图神经网络语义理解模型
NeurIPS 2021 | 寻找用于变分布泛化的隐式因果因子
专知会员服务
17+阅读 · 2021年12月7日
专知会员服务
25+阅读 · 2021年7月31日
【ICML2021】因果匹配领域泛化
专知
12+阅读 · 2021年8月12日
图节点嵌入(Node Embeddings)概述,9页pdf
专知
15+阅读 · 2020年8月22日
【NeurIPS2019】图变换网络:Graph Transformer Network
NAACL 2019 | 一种考虑缓和KL消失的简单VAE训练方法
PaperWeekly
20+阅读 · 2019年4月24日
CNN 反向传播算法推导
统计学习与视觉计算组
30+阅读 · 2017年12月29日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
Arxiv
0+阅读 · 1月1日
VIP会员
相关VIP内容
UnHiPPO:面向不确定性的状态空间模型初始化方法
专知会员服务
11+阅读 · 2025年6月6日
【NeurIPS2022】黎曼扩散模型
专知会员服务
43+阅读 · 2022年9月15日
【ICLR2022】GNN-LM基于全局信息的图神经网络语义理解模型
NeurIPS 2021 | 寻找用于变分布泛化的隐式因果因子
专知会员服务
17+阅读 · 2021年12月7日
专知会员服务
25+阅读 · 2021年7月31日
相关资讯
【ICML2021】因果匹配领域泛化
专知
12+阅读 · 2021年8月12日
图节点嵌入(Node Embeddings)概述,9页pdf
专知
15+阅读 · 2020年8月22日
【NeurIPS2019】图变换网络:Graph Transformer Network
NAACL 2019 | 一种考虑缓和KL消失的简单VAE训练方法
PaperWeekly
20+阅读 · 2019年4月24日
CNN 反向传播算法推导
统计学习与视觉计算组
30+阅读 · 2017年12月29日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员