The Next Token Prediction paradigm (NTP, for short) lies at the forefront of modern large foundational models that are pre-trained on diverse and large datasets. These models generalize effectively and have proven to be very successful in Natural Language Processing (NLP). Inspired by the generalization capabilities of Large Language Models (LLMs), we investigate whether the same NTP paradigm can also be applied to DBMS design and optimization tasks. Adopting NTP directly for database optimization is non-trivial due to the fundamental differences between the domains. In this paper, we present a framework termed Probe and Learn (PoLe) for applying NTP to optimize database systems. PoLe leverages Decision Transformers and hardware-generated tokens to effectively incorporate NTP into database systems. Preliminary results from the main-memory index scheduling task demonstrate that adopting NTP can improve both performance and generalizability.


翻译:下一令牌预测范式(简称NTP)是现代大型基础模型的前沿技术,这些模型在多样化的海量数据集上进行预训练。此类模型展现出卓越的泛化能力,并在自然语言处理领域取得了显著成功。受大型语言模型泛化能力的启发,本研究探讨NTP范式是否同样适用于数据库管理系统设计与优化任务。由于领域间存在本质差异,将NTP直接应用于数据库优化并非易事。本文提出名为"探针学习"的框架,将NTP应用于数据库系统优化。该框架通过决策Transformer与硬件生成令牌的协同机制,将NTP有效整合至数据库系统中。基于主存索引调度任务的初步实验表明,采用NTP范式能够同时提升系统性能与泛化能力。

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
Knowledge Embedding Based Graph Convolutional Network
Arxiv
24+阅读 · 2021年4月23日
Arxiv
21+阅读 · 2021年2月13日
Arxiv
12+阅读 · 2020年12月10日
Arxiv
12+阅读 · 2019年2月26日
Arxiv
14+阅读 · 2018年5月15日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
相关论文
Knowledge Embedding Based Graph Convolutional Network
Arxiv
24+阅读 · 2021年4月23日
Arxiv
21+阅读 · 2021年2月13日
Arxiv
12+阅读 · 2020年12月10日
Arxiv
12+阅读 · 2019年2月26日
Arxiv
14+阅读 · 2018年5月15日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员