Kernel Stein discrepancies (KSDs) have emerged as a powerful tool for quantifying goodness-of-fit over the last decade, featuring numerous successful applications. To the best of our knowledge, all existing KSD estimators with known rate achieve $\sqrt n$-convergence. In this work, we present two complementary results (with different proof strategies), establishing that the minimax lower bound of KSD estimation is $n^{-1/2}$ and settling the optimality of these estimators. Our first result focuses on KSD estimation on $\mathbb R^d$ with the Langevin-Stein operator; our explicit constant for the Gaussian kernel indicates that the difficulty of KSD estimation may increase exponentially with the dimensionality $d$. Our second result settles the minimax lower bound for KSD estimation on general domains.


翻译:核Stein差异(KSDs)在过去十年中已成为量化拟合优度的有力工具,并已成功应用于众多领域。据我们所知,所有已知收敛速率的现有KSD估计量均达到$\sqrt n$收敛速度。本工作通过两种互补的证明策略,确立了KSD估计的极小极大下界为$n^{-1/2}$,从而证明了这些估计量的最优性。我们的第一个结果聚焦于采用Langevin-Stein算子在$\mathbb R^d$上的KSD估计;针对高斯核的显式常数表明,KSD估计的难度可能随维度$d$呈指数级增长。第二个结果确立了在一般域上KSD估计的极小极大下界。

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
Arxiv
15+阅读 · 2023年10月21日
Arxiv
15+阅读 · 2021年12月22日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员