In this paper, we present a first-order Stress-Hybrid Virtual Element Method (SH-VEM) on six-noded triangular meshes for linear plane elasticity. We adopt the Hellinger--Reissner variational principle to construct a weak equilibrium condition and a stress based projection operator. On applying the divergence theorem to the weak strain-displacement relations, the stress projection operator is expressed in terms of the nodal displacements, which leads to a displacement-based formulation. This stress-hybrid approach assumes a globally continuous displacement field while the stress field is discontinuous across each element. The stress field is initially represented by divergence-free tensor polynomials based on Airy stress functions. However, for flexibility in choosing basis functions, we also present a formulation that uses a penalty term to enforce the element equilibrium conditions. This method is referred to as the Penalty Stress-Hybrid Virtual Element Method (PSH-VEM). Numerical results are presented for PSH-VEM and SH-VEM, and we compare their convergence to the composite triangle FEM and B-bar VEM on benchmark problems in linear elasticity. The SH-VEM converges optimally in the $L^2$ norm of the displacement, energy seminorm, and the $L^2$ norm of hydrostatic stress. Furthermore, the results reveal that PSH-VEM converges in most cases at a faster rate than the expected optimal rate, but it requires the selection of a suitably chosen penalty parameter.


翻译:暂无翻译

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Arxiv
16+阅读 · 2022年5月17日
VIP会员
相关资讯
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员