Large language models achieve impressive performance across diverse tasks but exhibit high inference latency due to their large parameter sizes. While quantization reduces model size, it often leads to performance degradation compared to the full model. Speculative decoding remains lossless but typically incurs extra overheads. We propose SPEQ, an algorithm-hardware co-designed speculative decoding method that uses part of the full-model weight bits to form a quantized draft model, thereby eliminating additional training or storage overhead. A reconfigurable processing element array enables efficient execution of both the draft and verification passes. Experimental results across 15 LLMs and tasks demonstrate that SPEQ achieves speedups of 2.07x, 1.53x, and 1.45x compared over FP16, Olive, and Tender, respectively.


翻译:大语言模型在多样化任务上展现出令人瞩目的性能,但由于其庞大的参数量,推理延迟较高。量化技术虽能减小模型尺寸,但与完整模型相比常导致性能下降。推测式解码虽能保持无损,但通常会产生额外开销。我们提出了SPEQ,一种算法-硬件协同设计的推测式解码方法,该方法利用完整模型权重的一部分比特来构建一个量化草稿模型,从而消除了额外的训练或存储开销。一个可重构的处理单元阵列能够高效执行草稿生成和验证两个阶段。在15个大语言模型和任务上的实验结果表明,与FP16、Olive和Tender相比,SPEQ分别实现了2.07倍、1.53倍和1.45倍的加速。

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
3+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
VIP会员
相关资讯
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
3+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员