Large Language Models (LLMs) have revolutionized natural language processing and demonstrated impressive capabilities in various tasks. Unfortunately, they are prone to hallucinations, where the model exposes incorrect or false information in its responses, which renders diligent evaluation approaches mandatory. While LLM performance in specific knowledge fields is often evaluated based on question and answer (Q&A) datasets, such evaluations usually report only a single accuracy number for the dataset, which often covers an entire field. This field-based evaluation, is problematic with respect to transparency and model improvement. A stratified evaluation could instead reveal subfields, where hallucinations are more likely to occur and thus help to better assess LLMs' risks and guide their further development. To support such stratified evaluations, we propose LLMMaps as a novel visualization technique that enables users to evaluate LLMs' performance with respect to Q&A datasets. LLMMaps provide detailed insights into LLMs' knowledge capabilities in different subfields, by transforming Q&A datasets as well as LLM responses into an internal knowledge structure. An extension for comparative visualization furthermore, allows for the detailed comparison of multiple LLMs. To assess LLMMaps we use them to conduct a comparative analysis of several state-of-the-art LLMs, such as BLOOM, GPT-2, GPT-3, ChatGPT and LLaMa-13B, as well as two qualitative user evaluations. All necessary source code and data for generating LLMMaps to be used in scientific publications and elsewhere is available on GitHub: https://github.com/viscom-ulm/LLMMaps


翻译:暂无翻译

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
Arxiv
0+阅读 · 2023年11月23日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员