Calibration of predicted probabilities is critical for reliable machine learning, yet it is poorly understood how standard training procedures yield well-calibrated models. This work provides the first theoretical proof that canonical $L_{2}$-regularized empirical risk minimization directly controls the smooth calibration error (smCE) without post-hoc correction or specialized calibration-promoting regularizer. We establish finite-sample generalization bounds for smCE based on optimization error, regularization strength, and the Rademacher complexity. We then instantiate this theory for models in reproducing kernel Hilbert spaces, deriving concrete guarantees for kernel ridge and logistic regression. Our experiments confirm these specific guarantees, demonstrating that $L_{2}$-regularized ERM can provide a well-calibrated model without boosting or post-hoc recalibration. The source code to reproduce all experiments is available at https://github.com/msfuji0211/erm_calibration.


翻译:预测概率的校准对于可靠的机器学习至关重要,然而标准训练过程如何产生校准良好的模型却鲜为人知。本工作首次从理论上证明,经典的$L_{2}$正则化经验风险最小化能够直接控制平滑校准误差,而无需进行事后校正或使用专门的促进校准的正则化项。我们基于优化误差、正则化强度和Rademacher复杂度,为平滑校准误差建立了有限样本泛化界。随后,我们在再生核希尔伯特空间模型中实例化了该理论,为核岭回归和逻辑回归推导出具体的保证。我们的实验证实了这些具体保证,表明$L_{2}$正则化经验风险最小化无需进行提升或事后重新校准即可提供校准良好的模型。用于复现所有实验的源代码可在 https://github.com/msfuji0211/erm_calibration 获取。

0
下载
关闭预览

相关内容

经验风险是对训练集中的所有样本点损失函数的平均最小化。经验风险越小说明模型f(X)对训练集的拟合程度越好。
FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
Arxiv
17+阅读 · 2019年3月28日
Deep Anomaly Detection with Outlier Exposure
Arxiv
17+阅读 · 2018年12月21日
VIP会员
相关资讯
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员