This study explores the generation and evaluation of synthetic fake news through fact based manipulations using large language models (LLMs). We introduce a novel methodology that extracts key facts from real articles, modifies them, and regenerates content to simulate fake news while maintaining coherence. To assess the quality of the generated content, we propose a set of evaluation metrics coherence, dissimilarity, and correctness. The research also investigates the application of synthetic data in fake news classification, comparing traditional machine learning models with transformer based models such as BERT. Our experiments demonstrate that transformer models, especially BERT, effectively leverage synthetic data for fake news detection, showing improvements with smaller proportions of synthetic data. Additionally, we find that fact verification features, which focus on identifying factual inconsistencies, provide the most promising results in distinguishing synthetic fake news. The study highlights the potential of synthetic data to enhance fake news detection systems, offering valuable insights for future research and suggesting that targeted improvements in synthetic data generation can further strengthen detection models.


翻译:本研究探讨了利用大语言模型通过事实操纵生成和评估合成虚假新闻的方法。我们提出了一种新颖的方法论:从真实文章中提取关键事实,对其进行修改,并重新生成内容以模拟虚假新闻,同时保持文本连贯性。为评估生成内容的质量,我们提出了一套评估指标——连贯性、差异性和正确性。本研究还调查了合成数据在虚假新闻分类中的应用,比较了传统机器学习模型与基于Transformer的模型(如BERT)。实验表明,Transformer模型(特别是BERT)能有效利用合成数据进行虚假新闻检测,且在合成数据比例较小时仍能表现出性能提升。此外,我们发现专注于识别事实不一致性的事实核查特征,在区分合成虚假新闻方面展现出最具前景的结果。本研究强调了合成数据在增强虚假新闻检测系统方面的潜力,为未来研究提供了有价值的见解,并表明针对合成数据生成进行定向改进可进一步强化检测模型。

0
下载
关闭预览

相关内容

ACM/IEEE第23届模型驱动工程语言和系统国际会议,是模型驱动软件和系统工程的首要会议系列,由ACM-SIGSOFT和IEEE-TCSE支持组织。自1998年以来,模型涵盖了建模的各个方面,从语言和方法到工具和应用程序。模特的参加者来自不同的背景,包括研究人员、学者、工程师和工业专业人士。MODELS 2019是一个论坛,参与者可以围绕建模和模型驱动的软件和系统交流前沿研究成果和创新实践经验。今年的版本将为建模社区提供进一步推进建模基础的机会,并在网络物理系统、嵌入式系统、社会技术系统、云计算、大数据、机器学习、安全、开源等新兴领域提出建模的创新应用以及可持续性。 官网链接:http://www.modelsconference.org/
FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
国家自然科学基金
6+阅读 · 2014年12月31日
Domain Representation for Knowledge Graph Embedding
Arxiv
14+阅读 · 2019年9月11日
Arxiv
17+阅读 · 2019年3月28日
Arxiv
15+阅读 · 2018年2月4日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
相关论文
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
国家自然科学基金
6+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员