Recording animal behaviour is an important step in evaluating the well-being of animals and further understanding the natural world. Current methods for documenting animal behaviour within a zoo setting, such as scan sampling, require excessive human effort, are unfit for around-the-clock monitoring, and may produce human-biased results. Several animal datasets already exist that focus predominantly on wildlife interactions, with some extending to action or behaviour recognition. However, there is limited data in a zoo setting or data focusing on the group behaviours of social animals. We introduce a large meerkat (Suricata Suricatta) behaviour recognition video dataset with diverse annotated behaviours, including group social interactions, tracking of individuals within the camera view, skewed class distribution, and varying illumination conditions. This dataset includes videos from two positions within the meerkat enclosure at the Wellington Zoo (Wellington, New Zealand), with 848,400 annotated frames across 20 videos and 15 unannotated videos.


翻译:暂无翻译

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
Arxiv
0+阅读 · 2023年8月10日
Arxiv
0+阅读 · 2023年8月9日
Arxiv
0+阅读 · 2023年8月8日
Arxiv
0+阅读 · 2023年8月7日
Arxiv
12+阅读 · 2019年2月26日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
相关论文
Arxiv
0+阅读 · 2023年8月10日
Arxiv
0+阅读 · 2023年8月9日
Arxiv
0+阅读 · 2023年8月8日
Arxiv
0+阅读 · 2023年8月7日
Arxiv
12+阅读 · 2019年2月26日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员