We propose a procedure for sparse regression with pairwise interactions, by generalizing the Univariate Guided Sparse Regression (UniLasso) methodology. A central contribution is our introduction of a concept of univariate (or marginal) interactions. Using this concept, we propose two algorithms -- uniPairs and uniPairs-2stage -- , and evaluate their performance against established methods, including Glinternet and Sprinter. We show that our framework yields sparser models with more interpretable interactions. We also prove support recovery results for our proposal under suitable conditions.


翻译:我们提出了一种用于稀疏回归中成对交互建模的方法,通过推广单变量引导稀疏回归(UniLasso)方法论。核心贡献在于引入了单变量(或边际)交互的概念。基于此概念,我们提出了两种算法——uniPairs和uniPairs-2stage,并与现有方法(包括Glinternet和Sprinter)进行了性能比较。研究表明,我们的框架能产生更稀疏且交互更具可解释性的模型。同时,我们在适当条件下证明了所提方法的支持恢复理论结果。

0
下载
关闭预览

相关内容

UnHiPPO:面向不确定性的状态空间模型初始化方法
专知会员服务
11+阅读 · 2025年6月6日
【NeurIPS2024】几何轨迹扩散模型
专知会员服务
24+阅读 · 2024年10月20日
《用于代码弱点识别的 LLVM 中间表示》CMU
专知会员服务
14+阅读 · 2022年12月12日
专知会员服务
22+阅读 · 2021年10月8日
【NeurIPS2020】可处理的反事实推理的深度结构因果模型
专知会员服务
49+阅读 · 2020年9月28日
【ICML2021】因果匹配领域泛化
专知
12+阅读 · 2021年8月12日
图节点嵌入(Node Embeddings)概述,9页pdf
专知
15+阅读 · 2020年8月22日
【NeurIPS2019】图变换网络:Graph Transformer Network
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
VIP会员
相关VIP内容
UnHiPPO:面向不确定性的状态空间模型初始化方法
专知会员服务
11+阅读 · 2025年6月6日
【NeurIPS2024】几何轨迹扩散模型
专知会员服务
24+阅读 · 2024年10月20日
《用于代码弱点识别的 LLVM 中间表示》CMU
专知会员服务
14+阅读 · 2022年12月12日
专知会员服务
22+阅读 · 2021年10月8日
【NeurIPS2020】可处理的反事实推理的深度结构因果模型
专知会员服务
49+阅读 · 2020年9月28日
相关资讯
【ICML2021】因果匹配领域泛化
专知
12+阅读 · 2021年8月12日
图节点嵌入(Node Embeddings)概述,9页pdf
专知
15+阅读 · 2020年8月22日
【NeurIPS2019】图变换网络:Graph Transformer Network
相关论文
相关基金
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员