We develop a generic computational model that can be used effectively for establishing the existence of winning strategies for concrete finite combinatorial games. Our modelling is (equational) logic-based involving advanced techniques from algebraic specification, and it can be executed by equational programming systems such as those from the OBJ-family. We show how this provides a form of experimental mathematics for strategy problems involving combinatorial games. We do this by defining general methods and by illustrating these with case studies.


翻译:我们开发了一个通用的计算模型,可有效用于确定具体有限组合博弈中必胜策略的存在性。该建模基于(等式)逻辑,涉及代数规约中的先进技术,并可由OBJ家族等等式编程系统执行。我们展示了这如何为涉及组合博弈的策略问题提供一种实验数学的形式。我们通过定义通用方法并结合案例研究进行说明来实现这一点。

0
下载
关闭预览

相关内容

【ICML2024】基于正则化的持续学习的统计理论
专知会员服务
21+阅读 · 2024年6月11日
【ICML2024】TIMEX++: 通过信息瓶颈学习时间序列解释
专知会员服务
17+阅读 · 2024年5月16日
【NAACL2021】信息解缠正则化持续学习的文本分类
专知会员服务
22+阅读 · 2021年4月11日
【NeurIPS2020】可处理的反事实推理的深度结构因果模型
专知会员服务
49+阅读 · 2020年9月28日
【MIT】硬负样本的对比学习
专知
13+阅读 · 2020年10月15日
图机器学习 2.2-2.4 Properties of Networks, Random Graph
图与推荐
10+阅读 · 2020年3月28日
论文浅尝 | Interaction Embeddings for Prediction and Explanation
开放知识图谱
11+阅读 · 2019年2月1日
MNIST入门:贝叶斯方法
Python程序员
23+阅读 · 2017年7月3日
国家自然科学基金
4+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
6+阅读 · 2014年12月31日
VIP会员
相关资讯
【MIT】硬负样本的对比学习
专知
13+阅读 · 2020年10月15日
图机器学习 2.2-2.4 Properties of Networks, Random Graph
图与推荐
10+阅读 · 2020年3月28日
论文浅尝 | Interaction Embeddings for Prediction and Explanation
开放知识图谱
11+阅读 · 2019年2月1日
MNIST入门:贝叶斯方法
Python程序员
23+阅读 · 2017年7月3日
相关基金
国家自然科学基金
4+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
6+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员