In this study, we focus on estimating the heterogeneous treatment effect (HTE) for survival outcome. The outcome is subject to censoring and the number of covariates is high-dimensional. We utilize data from both the randomized controlled trial (RCT), considered as the gold standard, and real-world data (RWD), possibly affected by hidden confounding factors. To achieve a more efficient HTE estimate, such integrative analysis requires great insight into the data generation mechanism, particularly the accurate characterization of unmeasured confounding effects/bias. With this aim, we propose a penalized-regression-based integrative approach that allows for the simultaneous estimation of parameters, selection of variables, and identification of the existence of unmeasured confounding effects. The consistency, asymptotic normality, and efficiency gains are rigorously established for the proposed estimate. Finally, we apply the proposed method to estimate the HTE of lobar/sublobar resection on the survival of lung cancer patients. The RCT is a multicenter non-inferiority randomized phase 3 trial, and the RWD comes from a clinical oncology cancer registry in the United States. The analysis reveals that the unmeasured confounding exists and the integrative approach does enhance the efficiency for the HTE estimation.


翻译:本研究聚焦于生存结局的异质性处理效应估计。结局数据存在删失,且协变量为高维。我们同时利用被视为金标准的随机对照试验数据以及可能受隐藏混杂因素影响的真实世界数据。为实现更高效的异质性处理效应估计,此类整合分析需深入理解数据生成机制,特别是对未测量混杂效应/偏倚的精确刻画。为此,我们提出一种基于惩罚回归的整合方法,该方法能够同时实现参数估计、变量选择以及未测量混杂效应存在性的识别。我们严格证明了所提估计量的一致性、渐近正态性及效率提升。最后,我们将所提方法应用于评估肺叶/亚肺叶切除术对肺癌患者生存期的异质性处理效应。随机对照试验数据来自一项多中心非劣效性随机3期试验,真实世界数据则来源于美国临床肿瘤学癌症登记库。分析表明未测量混杂确实存在,且整合方法有效提升了异质性处理效应估计的效率。

0
下载
关闭预览

相关内容

Integration:Integration, the VLSI Journal。 Explanation:集成,VLSI杂志。 Publisher:Elsevier。 SIT:http://dblp.uni-trier.de/db/journals/integration/
FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
46+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
VIP会员
相关资讯
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
46+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员