Large output spaces, also referred to as Extreme multilabel classification (XMC), is a setting that arises, e.g., in large-scale tagging and product-to-product recommendation, and is characterized by the number of labels ranging from hundreds of thousands to millions. This means that the linear classification head, usually only a tiny fraction of the overall model, turns into the main driver for compute and memory demand. Current state-of-the-art XMC methods predominantly rely on FP16-FP32 mixed-precision training, which we show can be unstable, and inefficient in terms of memory usage and computational overhead. Meanwhile, existing low-precision methods typically retain higher precision for the classification layer. In this work, we propose ELMO, a pure low-precision training framework for XMC models using BFloat16 and Float8 data types. By leveraging Kahan summation and stochastic rounding, we demonstrate that XMC models can be effectively trained entirely in Float8, without relying on single-precision master weights or tensor scaling. Low-precision training, combined with our proposed memory optimizations -- gradient fusion and chunking -- enables significant reductions in GPU memory usage. For example, we train a 3-million-label XMC model with only 6.6 GiB of GPU memory, compared to the 39.7 GiB required by the optimized SOTA method, Renee without compromising accuracy.


翻译:大规模输出空间,亦称极端多标签分类(XMC),常见于大规模标注和产品间推荐等场景,其标签数量可达数十万至数百万级别。这意味着通常仅占整体模型极小部分的线性分类头,反而成为计算与内存需求的主要来源。当前最先进的XMC方法主要依赖FP16-FP32混合精度训练,本文指出该方法存在训练不稳定、内存利用效率低且计算开销大的问题。而现有低精度方法通常仍为分类层保留较高精度。本研究提出ELMO——一种基于BFloat16与Float8数据类型的纯低精度XMC模型训练框架。通过结合Kahan求和与随机舍入技术,我们证明XMC模型可完全在Float8精度下有效训练,无需依赖单精度主权重或张量缩放。低精度训练与我们提出的梯度融合及分块内存优化技术相结合,能显著降低GPU内存占用。例如,我们在仅使用6.6 GiB GPU内存的条件下成功训练了包含300万个标签的XMC模型,而优化后的现有最优方法Renee需要39.7 GiB内存,且我们的方法在精度上未出现损失。

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
2+阅读 · 2017年12月31日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
VIP会员
相关资讯
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
2+阅读 · 2017年12月31日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员