A major difficulty in quantum computation is the ability to implement fault tolerant computations, protecting information against undesired interactions with the environment. Stabiliser codes were introduced as a means to protect information when storing or applying computations in Hilbert spaces where the local dimension is fixed, i.e. in Hilbert spaces of the form $({\mathbb C}^D)^{\otimes n}$. If $D$ is a prime power then one can consider stabiliser codes over finite fields \cite{KKKS2006}, which allows a deeper mathematical structure to be used to develop stabiliser codes. However, there is no practical reason that the subsystems should have the same local dimension and in this article we introduce a stabiliser formalism for mixed dimensional Hilbert spaces, i.e. of the form ${\mathbb C}^{D_1} \otimes \cdots \otimes {\mathbb C}^{D_n}$. More generally, we define and prove a Singleton bound for quantum error-correcting codes of mixed dimensional Hilbert spaces. We redefine entanglement measures for these Hilbert spaces and follow \cite{HESG2018} and define absolutely maximally entangled states as states which maximise this entanglement measure. We provide examples of absolutely maximally entangled states in spaces of dimensions not previously known to have absolutely maximally entangled states.


翻译:量子计算中的一个主要难点在于实现容错计算,以保护信息免受与环境的不良相互作用。稳定子码被引入作为一种在存储或应用计算时保护信息的手段,适用于局部维度固定的希尔伯特空间,即形如$({\mathbb C}^D)^{\otimes n}$的空间。若$D$为素数幂,则可考虑基于有限域的稳定子码\cite{KKKS2006},这允许利用更深的数学结构来发展稳定子码。然而,子系统并无实际理由必须具有相同的局部维度。本文针对混合维度希尔伯特空间(即形如${\mathbb C}^{D_1} \otimes \cdots \otimes {\mathbb C}^{D_n}$的空间)引入了一种稳定子形式体系。更一般地,我们定义并证明了混合维度希尔伯特空间中量子纠错码的Singleton界。我们重新定义了这些希尔伯特空间中的纠缠度量,并遵循\cite{HESG2018},将绝对最大纠缠态定义为最大化该纠缠度量的态。我们提供了在先前未知存在绝对最大纠缠态的维度空间中绝对最大纠缠态的具体实例。

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
A survey on deep hashing for image retrieval
Arxiv
15+阅读 · 2020年6月10日
VIP会员
相关资讯
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员