Remote photoplethysmography (rPPG) enables non-contact, continuous monitoring of physiological signals and offers a practical alternative to traditional health sensing methods. Although rPPG is promising for daily health monitoring, its application in long-term personal care scenarios, such as mirror-facing routines in high-altitude environments, remains challenging due to ambient lighting variations, frequent occlusions from hand movements, and dynamic facial postures. To address these challenges, we present LADH (Long-term Altitude Daily Health), the first long-term rPPG dataset containing 240 synchronized RGB and infrared (IR) facial videos from 21 participants across five common personal care scenarios, along with ground-truth PPG, respiration, and blood oxygen signals. Our experiments demonstrate that combining RGB and IR video inputs improves the accuracy and robustness of non-contact physiological monitoring, achieving a mean absolute error (MAE) of 4.99 BPM in heart rate estimation. Furthermore, we find that multi-task learning enhances performance across multiple physiological indicators simultaneously. Dataset and code are open at https://github.com/McJackTang/FusionVitals.


翻译:远程光电容积描记术(rPPG)实现了生理信号的非接触式连续监测,为传统健康感知方法提供了实用替代方案。尽管rPPG在日常健康监测中前景广阔,但在长期个人护理场景(如高海拔环境下面向镜子的日常护理)中的应用仍面临挑战,主要源于环境光照变化、手部运动造成的频繁遮挡以及动态面部姿态。为应对这些挑战,我们提出了LADH(长期高海拔日常健康)数据集——首个包含21名参与者在五种常见个人护理场景下的240段同步RGB与红外(IR)面部视频的长周期rPPG数据集,同时提供真实PPG、呼吸及血氧信号。实验表明,结合RGB与IR视频输入能提升非接触式生理监测的准确性与鲁棒性,在心率估计中达到4.99 BPM的平均绝对误差(MAE)。此外,我们发现多任务学习能同步提升多项生理指标的监测性能。数据集与代码已开源:https://github.com/McJackTang/FusionVitals。

0
下载
关闭预览

相关内容

信息检索杂志(IR)为信息检索的广泛领域中的理论、算法分析和实验的发布提供了一个国际论坛。感兴趣的主题包括对应用程序(例如Web,社交和流媒体,推荐系统和文本档案)的搜索、索引、分析和评估。这包括对搜索中人为因素的研究、桥接人工智能和信息检索以及特定领域的搜索应用程序。 官网地址:https://dblp.uni-trier.de/db/journals/ir/
FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Arxiv
15+阅读 · 2019年11月26日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员