Energy consumption in current large scale computing infrastructures is becoming a critical issue, especially with the growing demand for centralized systems such as cloud environments. With the advancement of microservice architectures and the Internet of Things, messaging systems have become an integral and mainstream part of modern computing infrastructures, carrying out significant workload in a majority of applications. In this paper, we describe an experimental process to explore energy-based benchmarking for RabbitMQ, one of the main open source messaging frameworks. The involved system is described, as well as required components, and setup scenarios, involving different workloads and configurations among the tests as well as messaging system use cases. Alternative architectures are investigated and compared from an energy consumption point of view, for different message rates and consumer numbers. Differences in architectural selection have been quantified and can lead to up to 31\% reduction in power consumption. The resulting dataset is made publicly available and can thus prove helpful for architectures' comparison, energy-based cost modeling, and beyond.


翻译:当前大规模计算基础设施的能耗正成为一个关键问题,尤其在云环境等集中式系统需求日益增长的背景下。随着微服务架构和物联网技术的发展,消息系统已成为现代计算基础设施不可或缺的主流组成部分,在大多数应用中承担着重要工作负载。本文描述了一种针对RabbitMQ(主流开源消息框架之一)的能耗基准测试实验流程。文中详细说明了所涉及的系统、必要组件及测试设置场景,涵盖不同工作负载、配置方案以及消息系统用例。研究从能耗角度对不同消息速率和消费者数量下的替代架构进行了探究与比较。架构选择差异已被量化,最高可实现31%的功耗降低。实验所得数据集已公开,可为架构比较、基于能耗的成本建模及其他相关研究提供有益参考。

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
46+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
VIP会员
相关资讯
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
46+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员