The success of deep neural networks in image classification and learning can be partly attributed to the features they extract from images. It is often speculated about the properties of a low-dimensional manifold that models extract and learn from images. However, there is not sufficient understanding about this low-dimensional space based on theory or empirical evidence. For image classification models, their last hidden layer is the one where images of each class is separated from other classes and it also has the least number of features. Here, we develop methods and formulations to study that feature space for any model. We study the partitioning of the domain in feature space, identify regions guaranteed to have certain classifications, and investigate its implications for the pixel space. We observe that geometric arrangements of decision boundaries in feature space is significantly different compared to pixel space, providing insights about adversarial vulnerabilities, image morphing, extrapolation, ambiguity in classification, and the mathematical understanding of image classification models.


翻译:深神经网络在图像分类和学习方面的成功可部分归因于它们从图像中提取的特征,往往被推测出模型从图像中提取和学习的低维维体的特性,然而,根据理论或经验证据,对于这一低维空间没有足够的理解。对于图像分类模型来说,它们的最后隐藏层是每个类的图像与其他类的图像分离,其特征也最少。在这里,我们开发了为任何模型研究该特征空间的方法和配方。我们研究了地貌空间域的分割,确定了保证有某些分类的区域,并研究了其对像素空间的影响。我们观察到,地貌空间决定界限的几何安排与像素空间有很大不同,提供了对立脆弱性、图像变形、外推法、分类中的模糊性以及图像分类模型的数学理解。

0
下载
关闭预览

相关内容

强化学习最新教程,17页pdf
专知会员服务
182+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
105+阅读 · 2019年10月9日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
15+阅读 · 2020年10月26日
A Survey on Bayesian Deep Learning
Arxiv
64+阅读 · 2020年7月2日
VIP会员
相关VIP内容
强化学习最新教程,17页pdf
专知会员服务
182+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
105+阅读 · 2019年10月9日
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
相关基金
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员