Modern machine learning models have started to consume incredible amounts of energy, thus incurring large carbon footprints (Strubell et al., 2019). To address this issue, we have created an energy estimation pipeline1, which allows practitioners to estimate the energy needs of their models in advance, without actually running or training them. We accomplished this, by collecting high-quality energy data and building a first baseline model, capable of predicting the energy consumption of DL models by accumulating their estimated layer-wise energies.


翻译:准确率不是唯一重要的指标:估算深度学习模型的能耗 翻译后的摘要: 现代机器学习模型开始消耗大量能源,从而产生巨大的碳足迹(Strubell等人,2019)。为解决这个问题,我们创建了一个能源估算管道1,可以让从业人员在运行或训练模型之前预先估算其能源需求。我们通过收集高质量的能源数据,并构建了一个基准模型,能够通过累计估计的层次能量来预测DL模型的能耗。

0
下载
关闭预览

相关内容

【2022新书】高效深度学习,Efficient Deep Learning Book
专知会员服务
127+阅读 · 2022年4月21日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
相关基金
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Top
微信扫码咨询专知VIP会员