Multi-fidelity models are of great importance due to their capability of fusing information coming from different numerical simulations, surrogates, and sensors. We focus on the approximation of high-dimensional scalar functions with low intrinsic dimensionality. By introducing a low dimensional bias we can fight the curse of dimensionality affecting these quantities of interest, especially for many-query applications. We seek a gradient-based reduction of the parameter space through linear active subspaces or a nonlinear transformation of the input space. Then we build a low-fidelity response surface based on such reduction, thus enabling nonlinear autoregressive multi-fidelity Gaussian process regression without the need of running new simulations with simplified physical models. This has a great potential in the data scarcity regime affecting many engineering applications. In this work we present a new multi-fidelity approach that involves active subspaces and the nonlinear level-set learning method, starting from the preliminary analysis previously conducted in Romor et al. 2020. The proposed framework is tested on two high-dimensional benchmark functions, and on a more complex car aerodynamics problem. We show how a low intrinsic dimensionality bias can increase the accuracy of Gaussian process response surfaces.


翻译:暂无翻译

0
下载
关闭预览

相关内容

【ACL2020】多模态信息抽取,365页ppt
专知会员服务
151+阅读 · 2020年7月6日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
消费级GPU成功运行1760亿参数大模型
机器之心
1+阅读 · 2022年8月19日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Arxiv
0+阅读 · 2023年8月30日
Arxiv
0+阅读 · 2023年8月29日
VIP会员
相关基金
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员