We present a new approach to parallelization of the first-order backward difference discretization (BDF1) of the time derivative in partial differential equations, such as the nonlinear heat and viscous Burgers equations. The time derivative term is discretized by using the method of lines based on the implicit BDF1 scheme, while the inviscid and viscous terms are approximated by conventional 2nd-order 3-point central discretizations of the 1st- and 2nd-order derivatives in each spatial direction. The global system of nonlinear discrete equations in the space-time domain is solved by the Newton method for all time levels simultaneously. For the BDF1 discretization, this all-at-once system at each Newton iteration is block bidiagonal, which can be inverted directly in a blockwise manner, thus leading to a set of fully decoupled equations associated with each time level. This allows for an efficient parallel-in-time implementation of the implicit BDF1 discretization for nonlinear differential equations. The proposed parallel-in-time method preserves a quadratic rate of convergence of the Newton method of the sequential BDF1 scheme, so that the computational cost of solving each block matrix in parallel is nearly identical to that of the sequential counterpart at each time step. Numerical results show that the new parallel-in-time BDF1 scheme provides the speedup of up to 28 on 32 computing cores for the 2-D nonlinear partial differential equations with both smooth and discontinuous solutions.


翻译:暂无翻译

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
VIP会员
相关资讯
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员