Integrating robot systems into manufacturing lines is a time-consuming process. In the era of digitalization, the research and development of new technologies is crucial for improving integration processes. Numerous challenges, including the lack of standardization, as well as intricate stakeholder relationships, complicate the process of robotic systems integration. This process typically consists of acquisition, integration, and deployment of the robot systems. This thesis focuses on three areas that help automate and simplify robotic systems integration. In the first area, related to acquisition, a constraint-based configurator is demonstrated that resolves compatibility challenges between robot devices, and automates the configuration process. This reduces the risk of integrating incompatible devices and decreases the need for experts during the configuration phase. In the second area, related to integration, the interoperable modeling format, Unified Robot Description Format (URDF), is investigated, where a detailed analysis is performed, revealing significant inconsistencies and critical improvements. This format is widely used for kinematic modeling and 3D visualization of robots, and its models can be reused across simulation tools. Improving this format benefits a wide range of users, including robotics engineers, researchers, and students. In the third area, related to deployment, Digital Twins (DTs) for robot systems are explored, as these improve efficiency and reduce downtime. A comprehensive literature review of DTs is conducted, and a case study of modular robot systems is developed. This research can accelerate the adoption of DTs in the robotics industry. These insights and approaches improve the process of robotic systems integration, offering valuable contributions that future research can build upon, ultimately driving efficiency, and reducing costs.


翻译:暂无翻译

0
下载
关闭预览

相关内容

Integration:Integration, the VLSI Journal。 Explanation:集成,VLSI杂志。 Publisher:Elsevier。 SIT:http://dblp.uni-trier.de/db/journals/integration/
FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
Arxiv
0+阅读 · 2024年2月20日
Arxiv
0+阅读 · 2024年2月19日
Arxiv
28+阅读 · 2021年9月26日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
相关论文
Arxiv
0+阅读 · 2024年2月20日
Arxiv
0+阅读 · 2024年2月19日
Arxiv
28+阅读 · 2021年9月26日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员