We give a stochastic optimization algorithm that solves a dense $n\times n$ real-valued linear system $Ax=b$, returning $\tilde x$ such that $\|A\tilde x-b\|\leq \epsilon\|b\|$ in time: $$\tilde O((n^2+nk^{\omega-1})\log1/\epsilon),$$ where $k$ is the number of singular values of $A$ larger than $O(1)$ times its smallest positive singular value, $\omega < 2.372$ is the matrix multiplication exponent, and $\tilde O$ hides a poly-logarithmic in $n$ factor. When $k=O(n^{1-\theta})$ (namely, $A$ has a flat-tailed spectrum, e.g., due to noisy data or regularization), this improves on both the cost of solving the system directly, as well as on the cost of preconditioning an iterative method such as conjugate gradient. In particular, our algorithm has an $\tilde O(n^2)$ runtime when $k=O(n^{0.729})$. We further adapt this result to sparse positive semidefinite matrices and least squares regression. Our main algorithm can be viewed as a randomized block coordinate descent method, where the key challenge is simultaneously ensuring good convergence and fast per-iteration time. In our analysis, we use theory of majorization for elementary symmetric polynomials to establish a sharp convergence guarantee when coordinate blocks are sampled using a determinantal point process. We then use a Markov chain coupling argument to show that similar convergence can be attained with a cheaper sampling scheme, and accelerate the block coordinate descent update via matrix sketching.


翻译:暂无翻译

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Arxiv
0+阅读 · 2024年2月2日
Arxiv
0+阅读 · 2024年1月31日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关论文
相关基金
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员