High-dimensional covariance estimation is notoriously sensitive to outliers. While statistically optimal estimators exist for general heavy-tailed distributions, they often rely on computationally expensive techniques like semidefinite programming or iterative M-estimation ($O(d^3)$). In this work, we target the specific regime of \textbf{Sub-Weibull distributions} (characterized by stretched exponential tails $\exp(-t^α)$). We investigate a computationally efficient alternative: the \textbf{Cross-Fitted Norm-Truncated Estimator}. Unlike element-wise truncation, our approach preserves the spectral geometry while requiring $O(Nd^2)$ operations, which represents the theoretical lower bound for constructing a full covariance matrix. Although spherical truncation is geometrically suboptimal for anisotropic data, we prove that within the Sub-Weibull class, the exponential tail decay compensates for this mismatch. Leveraging weighted Hanson-Wright inequalities, we derive non-asymptotic error bounds showing that our estimator recovers the optimal sub-Gaussian rate $\tilde{O}(\sqrt{r(Σ)/N})$ with high probability. This provides a scalable solution for high-dimensional data that exhibits tails heavier than Gaussian but lighter than polynomial decay.


翻译:高维协方差估计对异常值极为敏感。尽管针对一般重尾分布存在统计最优估计器,但它们通常依赖于计算成本高昂的技术,如半定规划或迭代M估计($O(d^3)$)。在本工作中,我们针对**亚威布尔分布**(以拉伸指数尾$\exp(-t^α)$为特征)这一特定体系进行研究。我们探索一种计算高效的替代方案:**交叉拟合范数截断估计器**。与逐元素截断不同,我们的方法在保持谱几何结构的同时仅需$O(Nd^2)$次运算,这构成了构建完整协方差矩阵的理论下界。尽管球面截断对于各向异性数据在几何上是次优的,但我们证明在亚威布尔分布类别内,指数尾衰减补偿了这种不匹配性。通过加权Hanson-Wright不等式,我们推导出非渐近误差界,表明该估计器能以高概率恢复最优亚高斯速率$\tilde{O}(\sqrt{r(Σ)/N})$。这为呈现比高斯分布更重但比多项式衰减更轻的尾部特征的高维数据提供了可扩展的解决方案。

0
下载
关闭预览

相关内容

UnHiPPO:面向不确定性的状态空间模型初始化方法
专知会员服务
11+阅读 · 2025年6月6日
NeurIPS 2021 | 寻找用于变分布泛化的隐式因果因子
专知会员服务
17+阅读 · 2021年12月7日
【WWW2021】场矩阵分解机推荐系统
专知会员服务
33+阅读 · 2021年2月27日
【ICML2021】因果匹配领域泛化
专知
12+阅读 · 2021年8月12日
【CVPR2021】跨模态检索的概率嵌入
专知
17+阅读 · 2021年3月2日
图节点嵌入(Node Embeddings)概述,9页pdf
专知
15+阅读 · 2020年8月22日
MNIST入门:贝叶斯方法
Python程序员
23+阅读 · 2017年7月3日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
VIP会员
相关VIP内容
UnHiPPO:面向不确定性的状态空间模型初始化方法
专知会员服务
11+阅读 · 2025年6月6日
NeurIPS 2021 | 寻找用于变分布泛化的隐式因果因子
专知会员服务
17+阅读 · 2021年12月7日
【WWW2021】场矩阵分解机推荐系统
专知会员服务
33+阅读 · 2021年2月27日
相关资讯
【ICML2021】因果匹配领域泛化
专知
12+阅读 · 2021年8月12日
【CVPR2021】跨模态检索的概率嵌入
专知
17+阅读 · 2021年3月2日
图节点嵌入(Node Embeddings)概述,9页pdf
专知
15+阅读 · 2020年8月22日
MNIST入门:贝叶斯方法
Python程序员
23+阅读 · 2017年7月3日
相关基金
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员