The operationalization of ethics in the technical practices of artificial intelligence (AI) is facing significant challenges. To address the problem of ineffective implementation of AI ethics, we present our diagnosis, analysis, and interventional recommendations from a unique perspective of the real-world implementation of AI ethics through explainable AI (XAI) techniques. We first describe the phenomenon (i.e., the "symptoms") of ineffective implementation of AI ethics in explainable AI using four empirical cases. From the "symptoms", we diagnose the root cause (i.e., the "disease") being the dysfunction and imbalance of power structures in the sociotechnical system of AI. The power structures are dominated by unjust and unchecked power that does not represent the benefits and interests of the public and the most impacted communities, and cannot be countervailed by ethical power. Based on the understanding of power mechanisms, we propose three interventional recommendations to tackle the root cause, including: 1) Making power explicable and checked, 2) Reframing the narratives and assumptions of AI and AI ethics to check unjust power and reflect the values and benefits of the public, and 3) Uniting the efforts of ethical and scientific conduct of AI to encode ethical values as technical standards, norms, and methods, including conducting critical examinations and limitation analyses of AI technical practices. We hope that our diagnosis and interventional recommendations can be a useful input to the AI community and civil society's ongoing discussion and implementation of ethics in AI for ethical and responsible AI practice.


翻译:人工智能(AI)技术实践中伦理的落实正面临重大挑战。为解决AI伦理实施效果不佳的问题,我们从可解释人工智能(XAI)技术实现AI伦理的现实应用这一独特视角,提出了我们的诊断、分析和干预建议。我们首先通过四个实证案例描述了可解释AI中AI伦理实施效果不佳的现象(即“症状”)。从这些“症状”出发,我们诊断其根本原因(即“疾病”)在于AI社会技术系统中权力结构的失调与失衡。这些权力结构被不公正且不受制约的权力所主导,无法代表公众和受影响最严重社区的利益,且无法被伦理权力所制衡。基于对权力机制的理解,我们提出了三项针对根本原因的干预建议,包括:1)使权力可解释且受制约;2)重构AI及AI伦理的叙事与假设,以制约不公正权力并反映公众的价值观与利益;3)联合AI伦理行为与科学实践的力量,将伦理价值编码为技术标准、规范和方法,包括对AI技术实践进行批判性审查和局限性分析。我们希望我们的诊断和干预建议能为AI社群和公民社会当前关于AI伦理的讨论与实践提供有益参考,以促进合乎伦理且负责任的AI实践。

0
下载
关闭预览

相关内容

人工智能杂志AI(Artificial Intelligence)是目前公认的发表该领域最新研究成果的主要国际论坛。该期刊欢迎有关AI广泛方面的论文,这些论文构成了整个领域的进步,也欢迎介绍人工智能应用的论文,但重点应该放在新的和新颖的人工智能方法如何提高应用领域的性能,而不是介绍传统人工智能方法的另一个应用。关于应用的论文应该描述一个原则性的解决方案,强调其新颖性,并对正在开发的人工智能技术进行深入的评估。 官网地址:http://dblp.uni-trier.de/db/journals/ai/
FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Arxiv
17+阅读 · 2021年7月18日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员