This study develops an interpretable machine learning framework to forecast startup outcomes, including funding, patenting, and exit. A firm-quarter panel for 2010-2023 is constructed from Crunchbase and matched to U.S. Patent and Trademark Office (USPTO) data. Three horizons are evaluated: next funding within 12 months, patent-stock growth within 24 months, and exit through an initial public offering (IPO) or acquisition within 36 months. Preprocessing is fit on a development window (2010-2019) and applied without change to later cohorts to avoid leakage. Class imbalance is addressed using inverse-prevalence weights and the Synthetic Minority Oversampling Technique for Nominal and Continuous features (SMOTE-NC). Logistic regression and tree ensembles, including Random Forest, XGBoost, LightGBM, and CatBoost, are compared using the area under the precision-recall curve (PR-AUC) and the area under the receiver operating characteristic curve (AUROC). Patent, funding, and exit predictions achieve AUROC values of 0.921, 0.817, and 0.872, providing transparent and reproducible rankings for innovation finance.


翻译:本研究开发了一个可解释的机器学习框架,用于预测初创企业的关键发展结果,包括融资、专利申请与退出。我们基于Crunchbase数据构建了2010-2023年企业季度面板数据集,并将其与美国专利商标局(USPTO)数据进行匹配。评估涵盖三个时间维度:未来12个月内获得下一轮融资、24个月内专利存量的增长、以及36个月内通过首次公开募股(IPO)或被收购实现退出。预处理流程在开发窗口期(2010-2019年)进行拟合,并保持不变地应用于后续队列数据以避免信息泄露。针对类别不平衡问题,采用逆流行度加权与针对标称及连续特征的合成少数类过采样技术(SMOTE-NC)进行处理。通过精确率-召回率曲线下面积(PR-AUC)与受试者工作特征曲线下面积(AUROC)对比了逻辑回归与树集成模型(包括随机森林、XGBoost、LightGBM和CatBoost)。专利、融资与退出预测的AUROC值分别达到0.921、0.817和0.872,为创新金融领域提供了透明且可复现的评估排序体系。

0
下载
关闭预览

相关内容

机器学习(Machine Learning)是一个研究计算学习方法的国际论坛。该杂志发表文章,报告广泛的学习方法应用于各种学习问题的实质性结果。该杂志的特色论文描述研究的问题和方法,应用研究和研究方法的问题。有关学习问题或方法的论文通过实证研究、理论分析或与心理现象的比较提供了坚实的支持。应用论文展示了如何应用学习方法来解决重要的应用问题。研究方法论文改进了机器学习的研究方法。所有的论文都以其他研究人员可以验证或复制的方式描述了支持证据。论文还详细说明了学习的组成部分,并讨论了关于知识表示和性能任务的假设。 官网地址:http://dblp.uni-trier.de/db/journals/ml/
FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
46+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
A Survey on Data Augmentation for Text Classification
VIP会员
相关资讯
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
46+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员