This paper aims to explore reconfigurable intelligent surface (RIS) integration in a millimeter wave (mmWave) communication system with low-complexity transceiver architecture under imperfect CSI assumption. Towards this, we propose a RIS-aided system with a fully analog (FA) architecture at the base station. However, to overcome the disadvantage of single-user transmission due to the single RF-chain, we employ NOMA. For such a system, we formulate sum rate (SR) and energy efficiency (EE) maximization problems to obtain the joint transmit beamformer, RIS phase shift matrix, and power allocation solutions under minimum rate constraint. We first tackle the fractional objectives of both problems by reformulating the SR and EE maximization problems into equivalent quadratic forms using the quadratic transform. On the other hand, we employ successive convex approximation and the semi-definite relaxation technique to handle the non-convex minimum rate and unit modulus constraint of the RIS phase shifts, respectively. Next, we propose an alternating optimization-based algorithm that iterates over the transmit beamformer, power allocation, and RIS phase shift subproblems. Further, we also show that the quadratic reformulation is equivalent to the WMSE-based reformulation for the case of SR maximization problem. Our numerical results show that the proposed RIS-NOMA integrated FA architecture system outperforms the optimally configured fully digital architecture in terms of SR at low SNR and EE for a wide range of SNR while still maintaining low hardware complexity and cost. Finally, we present the numerical performance analysis of the RIS-NOMA integrated low-complexity system for various system configuration parameters.


翻译:暂无翻译

0
下载
关闭预览

相关内容

Integration:Integration, the VLSI Journal。 Explanation:集成,VLSI杂志。 Publisher:Elsevier。 SIT:http://dblp.uni-trier.de/db/journals/integration/
FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
强化学习的Unsupervised Meta-Learning
CreateAMind
18+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
6+阅读 · 2014年12月31日
VIP会员
相关资讯
强化学习的Unsupervised Meta-Learning
CreateAMind
18+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
相关基金
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
6+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员