This paper promotes the use of random forests as versatile tools for estimating spatially disaggregated indicators in the presence of small area-specific sample sizes. Small area estimators are predominantly conceptualized within the regression-setting and rely on linear mixed models to account for the hierarchical structure of the survey data. In contrast, machine learning methods offer non-linear and non-parametric alternatives, combining excellent predictive performance and a reduced risk of model-misspecification. Mixed effects random forests combine advantages of regression forests with the ability to model hierarchical dependencies. This paper provides a coherent framework based on mixed effects random forests for estimating small area averages and proposes a non-parametric bootstrap estimator for assessing the uncertainty of the estimates. We illustrate advantages of our proposed methodology using Mexican income-data from the state Nuevo Le\'on. Finally, the methodology is evaluated in model-based and design-based simulations comparing the proposed methodology to traditional regression-based approaches for estimating small area averages.


翻译:本文提倡利用随机森林作为在有小面积特定抽样规模的情况下估计空间分类指标的多种工具。小面积估计者主要在回归定法中概念化,并依靠线性混合模型来计算调查数据的等级结构。相比之下,机器学习方法提供了非线性和非线性和非参数性替代方法,结合了极好的预测性能和减少模型误差的风险。混合效应随机森林结合了回归森林的优势和构建等级依赖性模型的能力。本文提供了一个基于混合效应随机森林的连贯框架,以估算小面积平均数,并提出了非参数性靴子测算器用于评估估计数的不确定性。我们用墨西哥新莱恩州的收入数据说明了我们拟议方法的优点。最后,在模型和设计模拟中评价了该方法,比较了估算小面积平均数的传统回归方法的拟议方法。

1
下载
关闭预览

相关内容

[综述]深度学习下的场景文本检测与识别
专知会员服务
78+阅读 · 2019年10月10日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
Arxiv
1+阅读 · 2022年4月18日
Arxiv
0+阅读 · 2022年4月17日
Arxiv
0+阅读 · 2022年4月14日
VIP会员
相关资讯
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
相关基金
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
Top
微信扫码咨询专知VIP会员