An algorithm for three-dimensional dynamic vehicle-track-structure interaction (VTSI) analysis is described in this paper. The algorithm is described in terms of bridges and high-speed trains, but more generally applies to multibody systems coupled to deformable structures by time-varying kinematic constraints. Coupling is accomplished by a kinematic constraint/Lagrange multiplier approach, resulting in a system of index-3 Differential Algebraic Equations (DAE). Three main new concepts are developed. (i) A corotational approach is used to represent the vehicle (train) dynamics. Reference coordinate frames are fitted to the undeformed geometry of the bridge. While the displacements of the train can be large, deformations are taken to be small within these frames, resulting in linear (time-varying) rather than nonlinear dynamics. (ii) If conventional finite elements are used to discretize the track, the curvature is discontinuous across elements (and possibly rotation, too, for curved tracks). This results in spurious numerical oscillations in computed contact forces and accelerations, quantities of key interest in VTSI. A NURBS-based discretization is employed for the track to mitigate such oscillations. (iii) The higher order continuity due to using NURBS allows for alternative techniques for solving the VTSI system. First, enforcing constraints at the acceleration level reduces an index-3 DAE to an index-1 system that can be solved without numerical dissipation. Second, a constraint projection method is proposed to solve an index-3 DAE system without numerical dissipation by correcting wheel velocities and accelerations. Moreover, the modularity of the presented algorithm, resulting from a kinematic constraint/Lagrange multiplier formulation, enables ready integration of this VTSI approach in existing structural analysis and finite element software.


翻译:暂无翻译

0
下载
关闭预览

相关内容

IFIP TC13 Conference on Human-Computer Interaction是人机交互领域的研究者和实践者展示其工作的重要平台。多年来,这些会议吸引了来自几个国家和文化的研究人员。官网链接:http://interact2019.org/
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Layer Normalization原理及其TensorFlow实现
深度学习每日摘要
32+阅读 · 2017年6月17日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
6+阅读 · 2014年12月31日
VIP会员
相关资讯
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Layer Normalization原理及其TensorFlow实现
深度学习每日摘要
32+阅读 · 2017年6月17日
相关基金
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
6+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员