We develop a uniform coalgebraic approach to Thomason and J\'{o}nsson-Tarski type dualities for various classes of neighborhood frames and neighborhood algebras. In the first part of the paper we construct an endofunctor on the category of complete and atomic Boolean algebras that is dual to the double powerset functor on $\mathsf{Set}$. This allows us to show that Thomason duality for neighborhood frames can be viewed as an algebra-coalgebra duality. We generalize this approach to any class of algebras for an endofunctor presented by one-step axioms in the language of infinitary modal logic. As a consequence, we obtain a uniform approach to dualities for various classes of neighborhood frames, including monotone neighborhood frames, pretopological spaces, and topological spaces. In the second part of the paper we develop a coalgebraic approach to J\'{o}nsson-Tarski duality for neighborhood algebras and descriptive neighborhood frames. We introduce an analogue of the Vietoris endofunctor on the category of Stone spaces and show that descriptive neighborhood frames are isomorphic to coalgebras for this endofunctor. This allows us to obtain a coalgebraic proof of the duality between descriptive neighborhood frames and neighborhood algebras. Using one-step axioms in the language of finitary modal logic, we restrict this duality to other classes of neighborhood algebras studied in the literature, including monotone modal algebras and contingency algebras. We conclude the paper by connecting the two types of dualities via canonical extensions, and discuss when these extensions are functorial.


翻译:我们对Thomason和J\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\-Tarski 型的煤矿介质。我们在论文的第一部分中为邻区框架和邻区代代体的不同类别, 开发一种统一的煤基的二元化方法。 在本文的第二部分中,我们将这种方法推广到任何一类的代代数, 由一阶级的直系代数和邻代的内代数 。 因此, 我们获得一种统一的方法来研究各种邻系的双元区框架, 包括单级邻代区框架、 前代区框架、 前代体空间和表的双代代体。

0
下载
关闭预览

相关内容

【NeurIPS 2019的主要趋势】Key trends from NeurIPS 2019
专知会员服务
12+阅读 · 2019年12月19日
强化学习最新教程,17页pdf
专知会员服务
182+阅读 · 2019年10月11日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
carla 学习笔记
CreateAMind
9+阅读 · 2018年2月7日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
0+阅读 · 2021年7月28日
Arxiv
0+阅读 · 2021年7月27日
The complexity of the Bondage problem in planar graphs
Arxiv
3+阅读 · 2018年2月7日
VIP会员
相关VIP内容
相关资讯
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
carla 学习笔记
CreateAMind
9+阅读 · 2018年2月7日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
相关论文
Top
微信扫码咨询专知VIP会员