The current study proposes an innovative methodology for the profiling of psychological traits of Operations Management (OM) and Supply Chain Management (SCM) professionals. We use innovative methods and tools of text mining and social network analysis to map the demand for relevant skills from a set of job descriptions, with a focus on psychological characteristics. The proposed approach aims to evaluate the market demand for specific traits by combining relevant psychological constructs, text mining techniques, and an innovative measure, namely, the Semantic Brand Score. We apply the proposed methodology to a dataset of job descriptions for OM and SCM professionals, with the objective of providing a mapping of their relevant required skills, including psychological characteristics. In addition, the analysis is then detailed by considering the region of the organization that issues the job description, its organizational size, and the seniority level of the open position in order to understand their nuances. Finally, topic modeling is used to examine key components and their relative significance in job descriptions. By employing a novel methodology and considering contextual factors, we provide an innovative understanding of the attitudinal traits that differentiate professionals. This research contributes to talent management, recruitment practices, and professional development initiatives, since it provides new figures and perspectives to improve the effectiveness and success of Operations Management and Supply Chain Management professionals.


翻译:暂无翻译

0
下载
关闭预览

相关内容

文本数据挖掘(Text Mining)是指从文本数据中抽取有价值的信息和知识的计算机处理技术。
FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
From Softmax to Sparsemax-ICML16(1)
KingsGarden
74+阅读 · 2016年11月26日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
6+阅读 · 2014年12月31日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
From Softmax to Sparsemax-ICML16(1)
KingsGarden
74+阅读 · 2016年11月26日
相关基金
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
6+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员