We give the first non-trivial decremental dynamic embedding of a weighted, undirected graph $G$ into $\ell_p$ space. Given a weighted graph $G$ undergoing a sequence of edge weight increases, the goal of this problem is to maintain a (randomized) mapping $\phi: (G,d) \to (X,\ell_p)$ from the set of vertices of the graph to the $\ell_p$ space such that for every pair of vertices $u$ and $v$, the expected distance between $\phi(u)$ and $\phi(v)$ in the $\ell_p$ metric is within a small multiplicative factor, referred to as the distortion, of their distance in $G$. Our main result is a dynamic algorithm with expected distortion $O(\log^2 n)$ and total update time $O\left((m^{1+o(1)} \log^2 W + Q)\log(nW) \right)$, where $W$ is the maximum weight of the edges, $Q$ is the total number of updates and $n, m$ denote the number of vertices and edges in $G$ respectively. This is the first result of its kind, extending the seminal result of Bourgain to the expanding field of dynamic algorithms. Moreover, we demonstrate that in the fully dynamic regime, where we tolerate edge insertions as well as deletions, no algorithm can explicitly maintain an embedding into $\ell_p$ space that has a low distortion with high probability.


翻译:暂无翻译

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
RL解决'BipedalWalkerHardcore-v2' (SOTA)
CreateAMind
31+阅读 · 2019年7月17日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
3+阅读 · 2014年12月31日
Arxiv
10+阅读 · 2023年8月13日
Arxiv
17+阅读 · 2021年2月15日
Phase-aware Speech Enhancement with Deep Complex U-Net
VIP会员
相关资讯
RL解决'BipedalWalkerHardcore-v2' (SOTA)
CreateAMind
31+阅读 · 2019年7月17日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
3+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员