We introduce a fusion of GPU accelerated primal heuristics for Mixed Integer Programming. Leveraging GPU acceleration enables exploration of larger search regions and faster iterations. A GPU-accelerated PDLP serves as an approximate LP solver, while a new probing cache facilitates rapid roundings and early infeasibility detection. Several state-of-the-art heuristics, including Feasibility Pump, Feasibility Jump, and Fix-and-Propagate, are further accelerated and enhanced. The combined approach of these GPU-driven algorithms yields significant improvements over existing methods, both in the number of feasible solutions and the quality of objectives by achieving 221 feasible solutions and 22% objective gap in the MIPLIB2017 benchmark on a presolved dataset.


翻译:本文提出了一种融合GPU加速的混合整数规划原始启发式算法框架。利用GPU加速能够探索更大的搜索区域并实现更快的迭代速度。其中,GPU加速的PDLP作为近似线性规划求解器,而新型探测缓存机制则支持快速取整与早期不可行性检测。包括可行性泵、可行性跳跃以及固定传播在内的多种先进启发式算法均得到进一步加速与增强。这些GPU驱动算法的组合策略在可行解数量与目标函数质量方面均显著优于现有方法:在预求解后的MIPLIB2017基准测试数据集上,该框架获得了221个可行解,并实现了22%的目标函数间隙。

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
Arxiv
15+阅读 · 2019年11月26日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关论文
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员