Entity Resolution (ER) is the problem of determining when two entities refer to the same underlying entity. The problem has been studied for over 50 years, and most recently, has taken on new importance in an era of large, heterogeneous 'knowledge graphs' published on the Web and used widely in domains as wide ranging as social media, e-commerce and search. This chapter will discuss the specific problem of named ER in the context of personal knowledge graphs (PKGs). We begin with a formal definition of the problem, and the components necessary for doing high-quality and efficient ER. We also discuss some challenges that are expected to arise for Web-scale data. Next, we provide a brief literature review, with a special focus on how existing techniques can potentially apply to PKGs. We conclude the chapter by covering some applications, as well as promising directions for future research.


翻译:暂无翻译

0
下载
关闭预览

相关内容

不同的数据提供方对同一个事物即实体 (Entity)可能会有不同的描述 (这 里的描述包括数据格式 、表示方法 等) ,每一个对实体的描述称为该实体的一个引用。实体解析,是指从一个“ 引用集合”中解析并映射到现实世界中的“ 实体”过程 。实体解析(Entity Resolution)又被称为记录链接(Record Linkage) 、对象识别(object Identification ) 、个体识别(Individual Identification) 、重复检测(Duplicate Detection)
FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Arxiv
0+阅读 · 2023年9月14日
Knowledge Embedding Based Graph Convolutional Network
Arxiv
24+阅读 · 2021年4月23日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员