Sparse joint shift (SJS) was recently proposed as a tractable model for general dataset shift which may cause changes to the marginal distributions of features and labels as well as the posterior probabilities and the class-conditional feature distributions. Fitting SJS for a target dataset without label observations may produce valid predictions of labels and estimates of class prior probabilities. We present new results on the transmission of SJS from sets of features to larger sets of features, a conditional correction formula for the class posterior probabilities under the target distribution, identifiability of SJS, and the relationship between SJS and covariate shift. In addition, we point out inconsistencies in the algorithms which were proposed for estimating the characteristics of SJS, as they could hamper the search for optimal solutions.


翻译:最近,稀疏联合移位 (SJS) 被提出作为一种适用于数据集移位,它可能会导致特征和标签的边缘分布以及后验概率和类条件特征分布的变化的可行模型。在没有标签观测的情况下为目标数据集拟合 SJS 可能会产生有效的标签预测和类先验概率估计。我们在特征集合和更大特征集合之间传输 SJS、给出了目标分布下类后验概率的条件修正公式、SJS 的可辨别性以及 SJS 和协变量移位之间的关系等新的结果。另外,我们指出了针对估计 SJS 特征的算法的不一致性,因为它们可能会妨碍寻找最优解。

0
下载
关闭预览

相关内容

在统计中,后验概率表示假设被赋予特定数据集的可能性。在条件概率方面,我们可以用以下方式表示它:后验= P(H | D),其中D =数据,H =假设
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
105+阅读 · 2019年10月9日
深度卷积神经网络中的降采样
极市平台
12+阅读 · 2019年5月24日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
3+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Arxiv
0+阅读 · 2023年5月18日
Arxiv
0+阅读 · 2023年5月17日
Arxiv
0+阅读 · 2023年5月17日
VIP会员
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
3+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Top
微信扫码咨询专知VIP会员