Discovering inter-point connection for efficient high-dimensional feature extraction from point coordinate is a key challenge in processing point cloud. Most existing methods focus on designing efficient local feature extractors while ignoring global connection, or vice versa. In this paper, we design a new Inductive Bias-aided Transformer (IBT) method to learn 3D inter-point relations, which considers both local and global attentions. Specifically, considering local spatial coherence, local feature learning is performed through Relative Position Encoding and Attentive Feature Pooling. We incorporate the learned locality into the Transformer module. The local feature affects value component in Transformer to modulate the relationship between channels of each point, which can enhance self-attention mechanism with locality based channel interaction. We demonstrate its superiority experimentally on classification and segmentation tasks. The code is available at: https://github.com/jiamang/IBT


翻译:暂无翻译

0
下载
关闭预览

相关内容

ExBert — 可视化分析Transformer学到的表示
专知会员服务
32+阅读 · 2019年10月16日
BERT/Transformer/迁移学习NLP资源大列表
专知
19+阅读 · 2019年6月9日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
VIP会员
相关资讯
BERT/Transformer/迁移学习NLP资源大列表
专知
19+阅读 · 2019年6月9日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
相关基金
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Top
微信扫码咨询专知VIP会员