We consider the minimization of integral functionals in one dimension and their approximation by $r$-adaptive finite elements. Including the grid of the FEM approximation as a variable in the minimization, we are able to show that the optimal grid configurations have a well-defined limit when the number of nodes in the grid is being sent to infinity. This is done by showing that the suitably renormalized energy functionals possess a limit in the sense of $\Gamma$-convergence. We provide numerical examples showing the closeness of the optimal asymptotic mesh obtained as a minimizer of the $\Gamma$-limit to the optimal finite meshes.


翻译:我们考虑一维积分泛函的最小化问题及其通过$r$-自适应有限元的近似方法。将有限元近似中的网格作为最小化问题中的变量,我们能够证明当网格节点数趋于无穷时,最优网格配置具有明确定义的极限。这是通过证明适当重归一化的能量泛函在$\Gamma$-收敛意义下存在极限来实现的。我们提供了数值示例,展示了作为$\Gamma$-极限最小化子得到的最优渐近网格与最优有限网格的接近程度。

0
下载
关闭预览

相关内容

【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
RL解决'BipedalWalkerHardcore-v2' (SOTA)
CreateAMind
31+阅读 · 2019年7月17日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
CVE-2018-7600 - Drupal 7.x 远程代码执行exp
黑客工具箱
14+阅读 · 2018年4月17日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Arxiv
18+阅读 · 2021年3月16日
Optimization for deep learning: theory and algorithms
Arxiv
106+阅读 · 2019年12月19日
Augmentation for small object detection
Arxiv
13+阅读 · 2019年2月19日
VIP会员
相关资讯
RL解决'BipedalWalkerHardcore-v2' (SOTA)
CreateAMind
31+阅读 · 2019年7月17日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
CVE-2018-7600 - Drupal 7.x 远程代码执行exp
黑客工具箱
14+阅读 · 2018年4月17日
相关论文
相关基金
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员