Autoregressive (AR) image generation models are capable of producing high-fidelity images but often suffer from slow inference due to their inherently sequential, token-by-token decoding process. Speculative decoding, which employs a lightweight draft model to approximate the output of a larger AR model, has shown promise in accelerating text generation without compromising quality. However, its application to image generation remains largely underexplored. The challenges stem from a significantly larger sampling space, which complicates the alignment between the draft and target model outputs, coupled with the inadequate use of the two-dimensional spatial structure inherent in images, thereby limiting the modeling of local dependencies. To overcome these challenges, we introduce Hawk, a new approach that harnesses the spatial structure of images to guide the speculative model toward more accurate and efficient predictions. Experimental results on multiple text-to-image benchmarks demonstrate a 1.71x speedup over standard AR models, while preserving both image fidelity and diversity.


翻译:自回归(AR)图像生成模型能够生成高保真度的图像,但由于其固有的序列化、逐令牌解码过程,通常存在推理速度慢的问题。推测性解码通过采用轻量级草稿模型来近似较大AR模型的输出,已在加速文本生成且不损失质量方面展现出潜力。然而,其在图像生成中的应用仍很大程度上未被充分探索。挑战主要源于显著更大的采样空间,这增加了草稿模型与目标模型输出对齐的复杂性,同时未能充分利用图像固有的二维空间结构,从而限制了对局部依赖关系的建模。为克服这些挑战,我们提出了Hawk,一种利用图像空间结构引导推测模型实现更准确、高效预测的新方法。在多个文本到图像基准测试上的实验结果表明,相较于标准AR模型,该方法实现了1.71倍的加速,同时保持了图像的保真度和多样性。

0
下载
关闭预览

相关内容

ACM/IEEE第23届模型驱动工程语言和系统国际会议,是模型驱动软件和系统工程的首要会议系列,由ACM-SIGSOFT和IEEE-TCSE支持组织。自1998年以来,模型涵盖了建模的各个方面,从语言和方法到工具和应用程序。模特的参加者来自不同的背景,包括研究人员、学者、工程师和工业专业人士。MODELS 2019是一个论坛,参与者可以围绕建模和模型驱动的软件和系统交流前沿研究成果和创新实践经验。今年的版本将为建模社区提供进一步推进建模基础的机会,并在网络物理系统、嵌入式系统、社会技术系统、云计算、大数据、机器学习、安全、开源等新兴领域提出建模的创新应用以及可持续性。 官网链接:http://www.modelsconference.org/
FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
3+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
3+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员