Predicting precipitation maps is a highly complex spatiotemporal modeling task, critical for mitigating the impacts of extreme weather events. Short-term precipitation forecasting, or nowcasting, requires models that are not only accurate but also computationally efficient for real-time applications. Current methods, such as token-based autoregressive models, often suffer from flawed inductive biases and slow inference, while diffusion models can be computationally intensive. To address these limitations, we introduce BlockGPT, a generative autoregressive transformer using batched tokenization (Block) method that predicts full two-dimensional fields (frames) at each time step. Conceived as a model-agnostic paradigm for video prediction, BlockGPT factorizes space-time by using self-attention within each frame and causal attention across frames; in this work, we instantiate it for precipitation nowcasting. We evaluate BlockGPT on two precipitation datasets, viz. KNMI (Netherlands) and SEVIR (U.S.), comparing it to state-of-the-art baselines including token-based (NowcastingGPT) and diffusion-based (DiffCast+Phydnet) models. The results show that BlockGPT achieves superior accuracy, event localization as measured by categorical metrics, and inference speeds up to 31x faster than comparable baselines.


翻译:降水图预测是一项高度复杂的时空建模任务,对于减轻极端天气事件的影响至关重要。短期降水预报(临近预报)不仅要求模型准确,还需要计算高效以满足实时应用需求。当前方法(如基于令牌的自回归模型)常存在归纳偏差缺陷且推理速度缓慢,而扩散模型则计算开销较大。为克服这些局限,我们提出了BlockGPT,一种采用批量令牌化(Block)方法的生成式自回归Transformer模型,能够在每个时间步预测完整的二维场(帧)。该模型作为视频预测的模型无关范式,通过帧内自注意力机制与帧间因果注意力机制实现时空解耦;本研究将其具体应用于降水临近预报。我们在KNMI(荷兰)和SEVIR(美国)两个降水数据集上评估BlockGPT,并与包括基于令牌的模型(NowcastingGPT)和基于扩散的模型(DiffCast+Phydnet)在内的前沿基线方法进行对比。结果表明,BlockGPT在预测精度、基于分类指标的事件定位能力方面表现优异,且推理速度最高可达同类基线模型的31倍。

0
下载
关闭预览

相关内容

ACM/IEEE第23届模型驱动工程语言和系统国际会议,是模型驱动软件和系统工程的首要会议系列,由ACM-SIGSOFT和IEEE-TCSE支持组织。自1998年以来,模型涵盖了建模的各个方面,从语言和方法到工具和应用程序。模特的参加者来自不同的背景,包括研究人员、学者、工程师和工业专业人士。MODELS 2019是一个论坛,参与者可以围绕建模和模型驱动的软件和系统交流前沿研究成果和创新实践经验。今年的版本将为建模社区提供进一步推进建模基础的机会,并在网络物理系统、嵌入式系统、社会技术系统、云计算、大数据、机器学习、安全、开源等新兴领域提出建模的创新应用以及可持续性。 官网链接:http://www.modelsconference.org/
FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
2+阅读 · 2017年12月31日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
VIP会员
相关资讯
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
2+阅读 · 2017年12月31日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员