One-shot signatures (OSS) are a powerful and uniquely quantum cryptographic primitive which allows anyone, given common reference string, to come up with a public verification key $\mathsf{pk}$ and a secret signing state $|\mathsf{sk}\rangle$. With the secret signing state, one can produce the signature of any one message, but no more. In a recent breakthrough work, Shmueli and Zhandry (CRYPTO 2025) constructed one-shot signatures, either unconditionally in a classical oracle model or assuming post-quantum indistinguishability obfuscation and the hardness of Learning with Errors (LWE) in the plain model. In this work, we address the inefficiency of the Shmueli-Zhandry construction which signs messages bit-by-bit, resulting in signing keys of $\Theta(\lambda^4)$ qubits and signatures of size $\Theta(\lambda^3)$ bits for polynomially long messages, where $\lambda$ is the security parameter. We construct a new, simple, direct, and efficient one-shot signature scheme which can sign messages of any polynomial length using signing keys of $\Theta(\lambda^2)$ qubits and signatures of size $\Theta(\lambda^2)$ bits. We achieve corresponding savings in runtimes, in both the oracle model and the plain model. In addition, unlike the Shmueli-Zhandry construction, our scheme achieves perfect correctness. Our scheme also achieves strong signature incompressibility, which implies a public-key quantum fire scheme with perfect correctness among other applications, correcting an error in a recent work of \c{C}akan, Goyal and Shmueli (QCrypt 2025) and recovering their applications.
翻译:单次签名(OSS)是一种强大且独特的量子密码学原语,它允许任何人在给定公共参考字符串的情况下,生成一个公开验证密钥 $\mathsf{pk}$ 和一个秘密签名态 $|\mathsf{sk}\rangle$。利用该秘密签名态,可以为任意一条消息生成签名,但仅限一次。在近期的一项突破性工作中,Shmueli 和 Zhandry(CRYPTO 2025)构造了单次签名方案,要么在经典预言机模型中无条件安全,要么在标准模型中基于后量子不可区分混淆与容错学习(LWE)的困难性假设。本文旨在解决 Shmueli-Zhandry 构造的效率问题,该构造按比特签名消息,导致对于多项式长度的消息,其签名密钥需要 $\Theta(\lambda^4)$ 个量子比特,签名大小为 $\Theta(\lambda^3)$ 比特,其中 $\lambda$ 为安全参数。我们构造了一种新颖、简单、直接且高效的单次签名方案,能够使用 $\Theta(\lambda^2)$ 个量子比特的签名密钥和 $\Theta(\lambda^2)$ 比特大小的签名,为任意多项式长度的消息签名。我们在预言机模型和标准模型中都实现了相应的运行时间节省。此外,与 Shmueli-Zhandry 构造不同,我们的方案实现了完美正确性。我们的方案还实现了强签名不可压缩性,这暗示了一个具有完美正确性的公钥量子防火墙方案以及其他应用,从而修正了 \c{C}akan、Goyal 和 Shmueli(QCrypt 2025)近期工作中的一处错误,并恢复了他们的应用。