In the paper, we study a class of nonconvex nonconcave minimax optimization problems (i.e., $\min_x\max_y f(x,y)$), where $f(x,y)$ is possible nonconvex in $x$, and it is nonconcave and satisfies the Polyak-Lojasiewicz (PL) condition in $y$. Moreover, we propose a class of enhanced momentum-based gradient descent ascent methods (i.e., MSGDA and AdaMSGDA) to solve these stochastic Nonconvex-PL minimax problems. In particular, our AdaMSGDA algorithm can use various adaptive learning rates in updating the variables $x$ and $y$ without relying on any global and coordinate-wise adaptive learning rates. Theoretically, we present an effective convergence analysis framework for our methods. Specifically, we prove that our MSGDA and AdaMSGDA methods have the best known sample (gradient) complexity of $O(\epsilon^{-3})$ only requiring one sample at each loop in finding an $\epsilon$-stationary solution (i.e., $\mathbb{E}\|\nabla F(x)\|\leq \epsilon$, where $F(x)=\max_y f(x,y)$). This manuscript commemorates the mathematician Boris Polyak (1935-2023).


翻译:在论文中,我们研究了一组非convex非conceve 小型马克思优化问题(即$$_x\max_y f(x,y)$),其中美元(x,y)是可能的,美元(x,y)是可能的,美元(x,y)是非convex(x,y)美元(Polyak-Lojasiewicz(PL))条件($)。此外,我们建议了一类基于动力的梯度下降增益方法(即,MSDA和AdaMSGDA),以解决这些非Confex-PL微型马克思问题。特别是,我们的AdaMSGDA算法可以使用各种适应性学习率更新变量(x,y) 美元(x,y) 美元(x) 美元(x) 和AdaMSGDA方法(A) 最有名的样本(Sqrient) 复杂度(eO(pislon,_3) 美元)。</s>

0
下载
关闭预览

相关内容

100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
167+阅读 · 2020年3月18日
强化学习最新教程,17页pdf
专知会员服务
182+阅读 · 2019年10月11日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
105+阅读 · 2019年10月9日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
18+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
4+阅读 · 2011年12月31日
Arxiv
0+阅读 · 2023年4月26日
VIP会员
相关VIP内容
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
167+阅读 · 2020年3月18日
强化学习最新教程,17页pdf
专知会员服务
182+阅读 · 2019年10月11日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
105+阅读 · 2019年10月9日
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
18+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
4+阅读 · 2011年12月31日
Top
微信扫码咨询专知VIP会员