We present a subword regularization method for WordPiece, which uses a maximum matching algorithm for tokenization. The proposed method, MaxMatch-Dropout, randomly drops words in a search using the maximum matching algorithm. It realizes finetuning with subword regularization for popular pretrained language models such as BERT-base. The experimental results demonstrate that MaxMatch-Dropout improves the performance of text classification and machine translation tasks as well as other subword regularization methods. Moreover, we provide a comparative analysis of subword regularization methods: subword regularization with SentencePiece (Unigram), BPE-Dropout, and MaxMatch-Dropout.


翻译:我们为WordPiece提出了一个子词规范化方法,该方法使用最高匹配算法进行象征性化。拟议方法,MaxMatch-Dropout,在使用最大匹配算法进行搜索时随机投放单词。该方法对诸如BERT基地等受大众培训的语文模式进行子词规范化的微调。实验结果表明,MaxMatch-Dropout改进了文本分类和机器翻译任务以及其他子词规范化方法的性能。此外,我们提供了子词规范化方法的比较分析:与DhanpPiece(Unigram)、BPE-Dropout和MaxMatch-Dropout的子词规范化。

0
下载
关闭预览

相关内容

不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
76+阅读 · 2022年6月28日
[综述]深度学习下的场景文本检测与识别
专知会员服务
78+阅读 · 2019年10月10日
强化学习三篇论文 避免遗忘等
CreateAMind
20+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
Arxiv
11+阅读 · 2019年6月19日
VIP会员
相关资讯
强化学习三篇论文 避免遗忘等
CreateAMind
20+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
Top
微信扫码咨询专知VIP会员